Automatic Label Correction and Appliance Prioritization in Single Household Electricity Disaggregation
نویسندگان
چکیده
Electricity disaggregation focuses on classification of individual appliances by monitoring aggregate electrical signals. In this paper we present a novel algorithm to automatically correct labels, discard contaminated training samples, and boost signal to noise ratio through high frequency noise reduction. We also propose a method for prioritized classification which classifies appliances with the most intense signals first. When tested on four houses in Kaggles Belkin dataset, these methods automatically relabel over 77% of all training samples and decrease error rate by an average of 45% in both real power and high frequency noise classification.
منابع مشابه
Label Correction and Event Detection for Electricity Disaggregation
Electricity disaggregation focuses on identifying individual appliances from one or more aggregate signals. By reporting detailed appliance usage to consumers, disaggregation has the potential to significantly reduce electrical waste in residential and commercial sectors. However, application of existing methods is limited by two critical shortcomings. First, supervised learning methods implici...
متن کاملHousehold Structure Analysis via Hawkes Processes for Enhancing Energy Disaggregation
In energy conservation research, energy disaggregation becomes an increasingly critical task, which takes a whole home electricity signal and decomposes it into its component appliances. While householder’s daily energy usage behavior acts as one powerful cue for breaking down the entire household’s energy consumption, existing works rarely modeled it straightforwardly. Instead, they either ign...
متن کاملAn unsupervised training method for non-intrusive appliance load monitoring
Non-intrusive appliance load monitoring is the process of disaggregating a household’s total electricity consumption into its contributing appliances. In this paper we propose an unsupervised training method for non-intrusive monitoring which, unlike existing supervised approaches, does not require training data to be collected by sub-metering individual appliances, nor does it require applianc...
متن کاملDisaggregating Multi-State Appliances from Smart Meter Data
Smart electricity meters record the aggregate consumption of an entire building. However, appliance-level information is more useful than aggregate data for a variety of purposes including energy management and load forecasting. Disaggregation aims to decompose an aggregate signal into appliance-by-appliance information. Existing disaggregation systems tend to perform well for single-state appl...
متن کامل'UK-DALE': A dataset recording UK Domestic Appliance-Level Electricity demand and whole-house demand
Many countries are rolling out smart electricity meters. These measure a home’s total power demand. However, research into consumer behaviour suggests that consumers are best able to improve their energy efficiency when provided with itemised, appliance-by-appliance consumption information. Energy disaggregation is a computational technique for estimating appliance-by-appliance energy consumpti...
متن کامل